This site uses cookies to provide logins and other features. Please accept the use of cookies by clicking Accept.
Tomato locus Phytoene synthase 1
Locus details | Download GMOD XML | Note to Editors | Annotation guidelines |
[loading edit links...]
|
[loading...]
|
|
![]() ![]() |
Registry name: | None | [Associate registry name] |
![]() ![]() | [Add notes, figures or images] |
Image | Description | Type |
---|
![]() ![]() | [Associate accession] |
Accession name:
Would you Like to specify an allele?
LA0330 | ![]() | ![]() | ![]() | ![]() | |
IL3-2 | ![]() | ![]() | ![]() | ![]() | |
LA3541 | ![]() | ![]() |
See 84 more accessions
LA0013 | ![]() | ![]() | |
LA3375 | ![]() | ||
LA2464A | ![]() | ||
LA3811 | ![]() | ||
LA2357 | ![]() | ||
LA3381 | ![]() | ||
LA3417 | ![]() | ||
LA2997 | ![]() | ||
LA0638 | ![]() | ||
LA0353 | ![]() |
LA0646 2-141 LA0157 LA0171 LA0172 LA0213 LA0508 LA0644 LA0727 LA0793 LA0877 LA2056 LA2336 LA2349 LA2359 LA2365 LA2368 LA2379 LA2464B LA2478 LA2482 LA2485 LA2488 LA2510 LA2512 LA2513 LA2515 LA2516 LA2517 LA2519 LA2520 LA2521 LA2522 LA2523 LA2597 LA2602 LA2603 LA2605 LA2608 LA2609 LA2898 LA3003 LA3210 LA3211 LA3253 LA3257 LA3286 LA3287 LA3289 LA3382 LA3393 LA3411 LA3487 LA3532 LA3586 LA3587 LA3598 LA3601 LA3604 LA3606 LA3677 LA3689 LA3690 LA3691 LA3692 LA3696 LA3697 LA3698 LA3707 LA3708 LA3831 LA3928 LA4044 LA4136
![]() ![]() | [Add new Allele] |
![]() ![]() | [Associate new locus] |
[loading...]
|
![]() ![]() | View Phytoene synthase 1 relationships in the stand-alone network browser |
[loading...] | [Legend] [Levels] |
![]() ![]() |
[loading...]
![]() ![]() |
![]() ![]() |
![]() ![]() | unprocessed genomic sequence region underlying this gene |
>Solyc03g031860.2 SL2.50ch03:4326134..4330127
GATTTCACTATATTGTAATATTAACTTGAGGTCACTATAGGAGCTCAAAAACTTCTAATTTTGAATCAATGTCTGGTTATACTTTTTTTGTCATAACTGTATCTCAAATGTGGTGTTTGGTTTATCTCATTTTGCAGAAGTCAAGAAACAGGTTACTCCTGTTTGAGTGAGGAAAAGTTGGTTTGCCTGTCTGTGGTCTTTTTATAATCTTTTTCTACAGAAGAGAAAGTGGGTAATTTTGTTTGAGAGTGGAAATATTCTCTAGTGGGAATCTACTAGGAGTAATTTATTTTCTATAAACTAAGTAAAGTTTGGAAGGTGACAAAAAGAAAGACAAAAATCTTGGAATTGTTTTAGACAACCAAGGTTTTCTTGCTCAGAATGTCTGTTGCCTTGTTATGGGTTGTTTCTCCTTGTGACGTCTCAAATGGGACAAGTTTCATGGAATCAGTCCGGGAGGGAAACCGTTTTTTTGATTCATCGAGGCATAGGAATTTGGTGTCCAATGAGAGAATCAATAGAGGTGGTGGAAAGCAAACTAATAATGGACGGAAATTTTCTGTACGGTCTGCTATTTTGGCTACTCCATCTGGAGAACGGACGATGACATCGGAACAGATGGTCTATGATGTGGTTTTGAGGCAGGCAGCCTTGGTGAAGAGGCAACTGAGATCTACCAATGAGTTAGAAGTGAAGCCGGATATACCTATTCCGGGGAATTTGGGCTTGTTGAGTGAAGCATATGATAGGTGTGGTGAAGTATGTGCAGAGTATGCAAAGACGTTTAACTTAGGTTAGCTTCTTCAATCTATTCATTCGTTTACCAAATATTATTTGGTAAGCACTAATTATGAATATATATATGTTCATGTTATTGATGAAGACAAAATTTGATCTTTGTTTGTTTATTCAGGAACTATGCTAATGACTCCCGAGAGAAGAAGGGCTATCTGGGCAATATATGGTGAGGTTTCTAGCCATTTAATAACAGTTACGCGCACAAACACATATGATTAATCGGGGACGAGAAAAAAAGAAATGAAGTTTGAGTTTTGAGGGTCATATGTAATAGGTAAATCCGAGCTTGACTAGCTTGAGATGTTTATTGTCATATCATGCTCAATACTAACCAAAACACTGAAAAAGAACTTGATTATATTTACATACTAATATTTTCATTTGCGTTGCTGTTCACATTTTTACCTATGGAACTGGTTTTTGTGATTTGTTATACTTCATATTCGATGTTAATAAAATATATCATTCCTCCCTTTTTCTCCACTTCAAGCTTTACTGTAGTGTTGAAAGGGGAAACTCCTTTTAATGATTGCATATATAAACGAACTTCTTGAGTTGAATAGTTTCTCATTATGATCTGTTTAAACAGTATGGTGCAGAAGAACAGATGAACTTGTTGATGGCCCAAACGCATCATATATTACCCCGGCAGCCTTAGATAGGTGGGAAAATAGGCTAGAAGATGTTTTCAATGGGCGGCCATTTGACATGCTCGATGGTGCTTTGTCCGATACAGTTTCTAACTTTCCAGTTGATATTCAGGTTAGTCTACCAATTCTATGGTCTTTATATTTGTTCAATTTGCGTTTGATGTCACTTTTGCTGAGGGCTTTTCTAATAGCTTACTTCAGCCTAGCGGAAATGTTTGTAGTTGAATCTCTAGTTCTGTCTCCTATATCTGTTTCTCTCGTCCTAGATACTACACATACTTCATTTCTGTTTTAACATTTTATTCGTCTTTTGGTGTTGTTTTGTATGTGAATCATATATTTGGAACAGAATCATTATTAGTTCACATGATTTCATTTGCTTTCTTCAATAGCGTAATTGTCTAACCTTCCAATATATGTTGCAGCCATTCAGAGATATGATTGAAGGAATGCGTATGGACTTGAGAAAATCGAGATACAAAAACTTCGACGAACTATACCTTTATTGTTATTATGTTGCTGGTACGGTTGGGTTGATGAGTGTTCCAATTATGGGTATCGCCCCTGAATCAAAGGCAACAACAGAGAGCGTATATAATGCTGCTTTGGCTCTGGGGATCGCAAATCAATTAACTAACATACTCAGAGATGTTGGAGAAGAGTAAGTACAAAGCTGTGTTTTACGCACATAATTTTTTTTGCTAATATTTACATATCAAAATATAGGAAAATGAGCTCTTCGGTTATCCGGTTTATATTTTTTTTATGTCAACATAATAGTATAAAGTAATTAGTATCAGTCGTTCTGGGAATAAAATTGCAGAACTCAATTTAGCCGTGTTGTGAAATCCTGCTTGTTTTGAGAGCTTAAAGCTCATTAGTTAGTCGTTAGAGACGAAGAAATTCTTCGTTGTCCATCTTTATTCCACCTTAAAGTTGTGATATTTTCATTATTGGTACATTTGGCAAAAACACCTGAACAAATTTATGACGGATGCCTTTTGAAAGTCACTATACCTGTCTAGTCGGCGTTTATCACATTTCTTTGACATATTGAACTTTGAAACATGATATCAGCTCTAGACAGTGACGAGCCATGATCAATTTCTTTCCTTTATTCTTTCTTTGGAAGTGCCGTATTTAGGCTTCCGTTGTTCTTATATATTGCTTTCCCTGCAGTGCCAGAAGAGGAAGAGTCTACTTGCCTCAAGATGAATTAGCACAGGCAGGTCTATCCGATGAAGATATATTTGCTGGAAGGGTGACCGATAAATGGAGAATCTTTATGAAGAAACAAATACATAGGGCAAGAAAGTTCTTTGATGAGGCAGAGAAAGGCGTGACAGAATTGAGCTCAGCTAGTAGATTCCCTGTAAGCATTCGTAAACTCTTTAGTTTTATGAAATGATTCTTTTTTCGCGTTATTAGATGAATATGGTTGCTTGTGTTGAGTATTTCTAGGTCGATGAAGTTGAGACAAGGGTTTTTAAGTTTTAACGACTTTTACGGGGTGCCATGTTATCTGCTACCTAATCTTAGGTAGTTGACCGGAAGGGCTAGAATTTTAACCTCATGTTCACCCTACCAACCAAGAAATGAACCTCGCATAGAGCTCGTAGTTATGAATATTTGCTTTGGCATGACATTGTGCGGATCATGAAATGTCTTAGATTATATGGAAAAATCATTCTATTACATCGAATAGATACATTAGATCTAAGAAGCACGCCGTGTTGTAAATGAGAAATTCTATAGCTCAGATCTTTAGTTTTCTCTGAACGACCTACAAACCAACGGATAACCTTGTATTGAGCTTGTCGTTCTCAGTATTTGCACTAACATTACGTCGTGTGGATCCTGAAATGGCTTGGATTGCTATTATTCTGGATATGGCAAAACCATTTTATTAGTACTAGATATCGAATAACTACATTTGACCCTACAAGTACCCTGGGTTGGAGTTACAATATCCCATACCTCGTATCTTTAGTGTTCTCTTATTTATCACCTTTGTCTACTATTCTGGCAAAATAACCTCACTCGTTACTCGGTGTTTTCCAGGTATGGGCATCTTTGGTCTTGTACCGCAAAATACTAGATGAGATTGAAGCCAATGACTACAACAACTTCACAAAGAGAGCATATGTGAGCAAATCAAAGAAGTTGATTGCATTACCTATTGCATATGCAAAATCTCTTGTGCCTCCTACAAAAACTGCCTCTCTTCAAAGATAAAGCATGAAATGAAGATATATATATATATATATATAGCAATATACATTAGAAGAAAAAAAGGAAGAAGAAATGTTGTTGTATTGATATAAATGTATATCATAAATATTAGGTTGTAGTAACATTCAATATAATTATCTCTTGTAGTTGTTGTATCTTCACTTTATCTCAACTCCTTTGAGAGAACTTTCCGTAGTTATCTGCTTTGCACTTGGTTACTCAGAATTTTACTGTGGGCATGATAATTGATATACCAAATTCAGTTTTGATTCTATCGAAAAATTTGTTATTACATTTTTTTGGGGGGAAAGGAA
GATTTCACTATATTGTAATATTAACTTGAGGTCACTATAGGAGCTCAAAAACTTCTAATTTTGAATCAATGTCTGGTTATACTTTTTTTGTCATAACTGTATCTCAAATGTGGTGTTTGGTTTATCTCATTTTGCAGAAGTCAAGAAACAGGTTACTCCTGTTTGAGTGAGGAAAAGTTGGTTTGCCTGTCTGTGGTCTTTTTATAATCTTTTTCTACAGAAGAGAAAGTGGGTAATTTTGTTTGAGAGTGGAAATATTCTCTAGTGGGAATCTACTAGGAGTAATTTATTTTCTATAAACTAAGTAAAGTTTGGAAGGTGACAAAAAGAAAGACAAAAATCTTGGAATTGTTTTAGACAACCAAGGTTTTCTTGCTCAGAATGTCTGTTGCCTTGTTATGGGTTGTTTCTCCTTGTGACGTCTCAAATGGGACAAGTTTCATGGAATCAGTCCGGGAGGGAAACCGTTTTTTTGATTCATCGAGGCATAGGAATTTGGTGTCCAATGAGAGAATCAATAGAGGTGGTGGAAAGCAAACTAATAATGGACGGAAATTTTCTGTACGGTCTGCTATTTTGGCTACTCCATCTGGAGAACGGACGATGACATCGGAACAGATGGTCTATGATGTGGTTTTGAGGCAGGCAGCCTTGGTGAAGAGGCAACTGAGATCTACCAATGAGTTAGAAGTGAAGCCGGATATACCTATTCCGGGGAATTTGGGCTTGTTGAGTGAAGCATATGATAGGTGTGGTGAAGTATGTGCAGAGTATGCAAAGACGTTTAACTTAGGTTAGCTTCTTCAATCTATTCATTCGTTTACCAAATATTATTTGGTAAGCACTAATTATGAATATATATATGTTCATGTTATTGATGAAGACAAAATTTGATCTTTGTTTGTTTATTCAGGAACTATGCTAATGACTCCCGAGAGAAGAAGGGCTATCTGGGCAATATATGGTGAGGTTTCTAGCCATTTAATAACAGTTACGCGCACAAACACATATGATTAATCGGGGACGAGAAAAAAAGAAATGAAGTTTGAGTTTTGAGGGTCATATGTAATAGGTAAATCCGAGCTTGACTAGCTTGAGATGTTTATTGTCATATCATGCTCAATACTAACCAAAACACTGAAAAAGAACTTGATTATATTTACATACTAATATTTTCATTTGCGTTGCTGTTCACATTTTTACCTATGGAACTGGTTTTTGTGATTTGTTATACTTCATATTCGATGTTAATAAAATATATCATTCCTCCCTTTTTCTCCACTTCAAGCTTTACTGTAGTGTTGAAAGGGGAAACTCCTTTTAATGATTGCATATATAAACGAACTTCTTGAGTTGAATAGTTTCTCATTATGATCTGTTTAAACAGTATGGTGCAGAAGAACAGATGAACTTGTTGATGGCCCAAACGCATCATATATTACCCCGGCAGCCTTAGATAGGTGGGAAAATAGGCTAGAAGATGTTTTCAATGGGCGGCCATTTGACATGCTCGATGGTGCTTTGTCCGATACAGTTTCTAACTTTCCAGTTGATATTCAGGTTAGTCTACCAATTCTATGGTCTTTATATTTGTTCAATTTGCGTTTGATGTCACTTTTGCTGAGGGCTTTTCTAATAGCTTACTTCAGCCTAGCGGAAATGTTTGTAGTTGAATCTCTAGTTCTGTCTCCTATATCTGTTTCTCTCGTCCTAGATACTACACATACTTCATTTCTGTTTTAACATTTTATTCGTCTTTTGGTGTTGTTTTGTATGTGAATCATATATTTGGAACAGAATCATTATTAGTTCACATGATTTCATTTGCTTTCTTCAATAGCGTAATTGTCTAACCTTCCAATATATGTTGCAGCCATTCAGAGATATGATTGAAGGAATGCGTATGGACTTGAGAAAATCGAGATACAAAAACTTCGACGAACTATACCTTTATTGTTATTATGTTGCTGGTACGGTTGGGTTGATGAGTGTTCCAATTATGGGTATCGCCCCTGAATCAAAGGCAACAACAGAGAGCGTATATAATGCTGCTTTGGCTCTGGGGATCGCAAATCAATTAACTAACATACTCAGAGATGTTGGAGAAGAGTAAGTACAAAGCTGTGTTTTACGCACATAATTTTTTTTGCTAATATTTACATATCAAAATATAGGAAAATGAGCTCTTCGGTTATCCGGTTTATATTTTTTTTATGTCAACATAATAGTATAAAGTAATTAGTATCAGTCGTTCTGGGAATAAAATTGCAGAACTCAATTTAGCCGTGTTGTGAAATCCTGCTTGTTTTGAGAGCTTAAAGCTCATTAGTTAGTCGTTAGAGACGAAGAAATTCTTCGTTGTCCATCTTTATTCCACCTTAAAGTTGTGATATTTTCATTATTGGTACATTTGGCAAAAACACCTGAACAAATTTATGACGGATGCCTTTTGAAAGTCACTATACCTGTCTAGTCGGCGTTTATCACATTTCTTTGACATATTGAACTTTGAAACATGATATCAGCTCTAGACAGTGACGAGCCATGATCAATTTCTTTCCTTTATTCTTTCTTTGGAAGTGCCGTATTTAGGCTTCCGTTGTTCTTATATATTGCTTTCCCTGCAGTGCCAGAAGAGGAAGAGTCTACTTGCCTCAAGATGAATTAGCACAGGCAGGTCTATCCGATGAAGATATATTTGCTGGAAGGGTGACCGATAAATGGAGAATCTTTATGAAGAAACAAATACATAGGGCAAGAAAGTTCTTTGATGAGGCAGAGAAAGGCGTGACAGAATTGAGCTCAGCTAGTAGATTCCCTGTAAGCATTCGTAAACTCTTTAGTTTTATGAAATGATTCTTTTTTCGCGTTATTAGATGAATATGGTTGCTTGTGTTGAGTATTTCTAGGTCGATGAAGTTGAGACAAGGGTTTTTAAGTTTTAACGACTTTTACGGGGTGCCATGTTATCTGCTACCTAATCTTAGGTAGTTGACCGGAAGGGCTAGAATTTTAACCTCATGTTCACCCTACCAACCAAGAAATGAACCTCGCATAGAGCTCGTAGTTATGAATATTTGCTTTGGCATGACATTGTGCGGATCATGAAATGTCTTAGATTATATGGAAAAATCATTCTATTACATCGAATAGATACATTAGATCTAAGAAGCACGCCGTGTTGTAAATGAGAAATTCTATAGCTCAGATCTTTAGTTTTCTCTGAACGACCTACAAACCAACGGATAACCTTGTATTGAGCTTGTCGTTCTCAGTATTTGCACTAACATTACGTCGTGTGGATCCTGAAATGGCTTGGATTGCTATTATTCTGGATATGGCAAAACCATTTTATTAGTACTAGATATCGAATAACTACATTTGACCCTACAAGTACCCTGGGTTGGAGTTACAATATCCCATACCTCGTATCTTTAGTGTTCTCTTATTTATCACCTTTGTCTACTATTCTGGCAAAATAACCTCACTCGTTACTCGGTGTTTTCCAGGTATGGGCATCTTTGGTCTTGTACCGCAAAATACTAGATGAGATTGAAGCCAATGACTACAACAACTTCACAAAGAGAGCATATGTGAGCAAATCAAAGAAGTTGATTGCATTACCTATTGCATATGCAAAATCTCTTGTGCCTCCTACAAAAACTGCCTCTCTTCAAAGATAAAGCATGAAATGAAGATATATATATATATATATATAGCAATATACATTAGAAGAAAAAAAGGAAGAAGAAATGTTGTTGTATTGATATAAATGTATATCATAAATATTAGGTTGTAGTAACATTCAATATAATTATCTCTTGTAGTTGTTGTATCTTCACTTTATCTCAACTCCTTTGAGAGAACTTTCCGTAGTTATCTGCTTTGCACTTGGTTACTCAGAATTTTACTGTGGGCATGATAATTGATATACCAAATTCAGTTTTGATTCTATCGAAAAATTTGTTATTACATTTTTTTGGGGGGAAAGGAA
Download sequence region |
Get flanking sequences on SL2.50ch03
|
![]() ![]() |
![]() ![]() | terms associated with this mRNA |
![]() ![]() | spliced cDNA sequence, including UTRs |
>Solyc03g031860.2.1 Phytoene synthase 1
GATTTCACTATATTGTAATATTAACTTGAGGTCACTATAGGAGCTCAAAAACTTCTAATTTTGAATCAATGTCTGGTTATACTTTTTTTGTCATAACTGTATCTCAAATGTGGTGTTTGGTTTATCTCATTTTGCAGAAGTCAAGAAACAGGTTACTCCTGTTTGAGTGAGGAAAAGTTGGTTTGCCTGTCTGTGGTCTTTTTATAATCTTTTTCTACAGAAGAGAAAGTGGGTAATTTTGTTTGAGAGTGGAAATATTCTCTAGTGGGAATCTACTAGGAGTAATTTATTTTCTATAAACTAAGTAAAGTTTGGAAGGTGACAAAAAGAAAGACAAAAATCTTGGAATTGTTTTAGACAACCAAGGTTTTCTTGCTCAGAATGTCTGTTGCCTTGTTATGGGTTGTTTCTCCTTGTGACGTCTCAAATGGGACAAGTTTCATGGAATCAGTCCGGGAGGGAAACCGTTTTTTTGATTCATCGAGGCATAGGAATTTGGTGTCCAATGAGAGAATCAATAGAGGTGGTGGAAAGCAAACTAATAATGGACGGAAATTTTCTGTACGGTCTGCTATTTTGGCTACTCCATCTGGAGAACGGACGATGACATCGGAACAGATGGTCTATGATGTGGTTTTGAGGCAGGCAGCCTTGGTGAAGAGGCAACTGAGATCTACCAATGAGTTAGAAGTGAAGCCGGATATACCTATTCCGGGGAATTTGGGCTTGTTGAGTGAAGCATATGATAGGTGTGGTGAAGTATGTGCAGAGTATGCAAAGACGTTTAACTTAGGAACTATGCTAATGACTCCCGAGAGAAGAAGGGCTATCTGGGCAATATATGTATGGTGCAGAAGAACAGATGAACTTGTTGATGGCCCAAACGCATCATATATTACCCCGGCAGCCTTAGATAGGTGGGAAAATAGGCTAGAAGATGTTTTCAATGGGCGGCCATTTGACATGCTCGATGGTGCTTTGTCCGATACAGTTTCTAACTTTCCAGTTGATATTCAGCCATTCAGAGATATGATTGAAGGAATGCGTATGGACTTGAGAAAATCGAGATACAAAAACTTCGACGAACTATACCTTTATTGTTATTATGTTGCTGGTACGGTTGGGTTGATGAGTGTTCCAATTATGGGTATCGCCCCTGAATCAAAGGCAACAACAGAGAGCGTATATAATGCTGCTTTGGCTCTGGGGATCGCAAATCAATTAACTAACATACTCAGAGATGTTGGAGAAGATGCCAGAAGAGGAAGAGTCTACTTGCCTCAAGATGAATTAGCACAGGCAGGTCTATCCGATGAAGATATATTTGCTGGAAGGGTGACCGATAAATGGAGAATCTTTATGAAGAAACAAATACATAGGGCAAGAAAGTTCTTTGATGAGGCAGAGAAAGGCGTGACAGAATTGAGCTCAGCTAGTAGATTCCCTGTATGGGCATCTTTGGTCTTGTACCGCAAAATACTAGATGAGATTGAAGCCAATGACTACAACAACTTCACAAAGAGAGCATATGTGAGCAAATCAAAGAAGTTGATTGCATTACCTATTGCATATGCAAAATCTCTTGTGCCTCCTACAAAAACTGCCTCTCTTCAAAGATAAAGCATGAAATGAAGATATATATATATATATATATAGCAATATACATTAGAAGAAAAAAAGGAAGAAGAAATGTTGTTGTATTGATATAAATGTATATCATAAATATTAGGTTGTAGTAACATTCAATATAATTATCTCTTGTAGTTGTTGTATCTTCACTTTATCTCAACTCCTTTGAGAGAACTTTCCGTAGTTATCTGCTTTGCACTTGGTTACTCAGAATTTTACTGTGGGCATGATAATTGATATACCAAATTCAGTTTTGATTCTATCGAAAAATTTGTTATTACATTTTTTTGGGGGGAAAGGAA
GATTTCACTATATTGTAATATTAACTTGAGGTCACTATAGGAGCTCAAAAACTTCTAATTTTGAATCAATGTCTGGTTATACTTTTTTTGTCATAACTGTATCTCAAATGTGGTGTTTGGTTTATCTCATTTTGCAGAAGTCAAGAAACAGGTTACTCCTGTTTGAGTGAGGAAAAGTTGGTTTGCCTGTCTGTGGTCTTTTTATAATCTTTTTCTACAGAAGAGAAAGTGGGTAATTTTGTTTGAGAGTGGAAATATTCTCTAGTGGGAATCTACTAGGAGTAATTTATTTTCTATAAACTAAGTAAAGTTTGGAAGGTGACAAAAAGAAAGACAAAAATCTTGGAATTGTTTTAGACAACCAAGGTTTTCTTGCTCAGAATGTCTGTTGCCTTGTTATGGGTTGTTTCTCCTTGTGACGTCTCAAATGGGACAAGTTTCATGGAATCAGTCCGGGAGGGAAACCGTTTTTTTGATTCATCGAGGCATAGGAATTTGGTGTCCAATGAGAGAATCAATAGAGGTGGTGGAAAGCAAACTAATAATGGACGGAAATTTTCTGTACGGTCTGCTATTTTGGCTACTCCATCTGGAGAACGGACGATGACATCGGAACAGATGGTCTATGATGTGGTTTTGAGGCAGGCAGCCTTGGTGAAGAGGCAACTGAGATCTACCAATGAGTTAGAAGTGAAGCCGGATATACCTATTCCGGGGAATTTGGGCTTGTTGAGTGAAGCATATGATAGGTGTGGTGAAGTATGTGCAGAGTATGCAAAGACGTTTAACTTAGGAACTATGCTAATGACTCCCGAGAGAAGAAGGGCTATCTGGGCAATATATGTATGGTGCAGAAGAACAGATGAACTTGTTGATGGCCCAAACGCATCATATATTACCCCGGCAGCCTTAGATAGGTGGGAAAATAGGCTAGAAGATGTTTTCAATGGGCGGCCATTTGACATGCTCGATGGTGCTTTGTCCGATACAGTTTCTAACTTTCCAGTTGATATTCAGCCATTCAGAGATATGATTGAAGGAATGCGTATGGACTTGAGAAAATCGAGATACAAAAACTTCGACGAACTATACCTTTATTGTTATTATGTTGCTGGTACGGTTGGGTTGATGAGTGTTCCAATTATGGGTATCGCCCCTGAATCAAAGGCAACAACAGAGAGCGTATATAATGCTGCTTTGGCTCTGGGGATCGCAAATCAATTAACTAACATACTCAGAGATGTTGGAGAAGATGCCAGAAGAGGAAGAGTCTACTTGCCTCAAGATGAATTAGCACAGGCAGGTCTATCCGATGAAGATATATTTGCTGGAAGGGTGACCGATAAATGGAGAATCTTTATGAAGAAACAAATACATAGGGCAAGAAAGTTCTTTGATGAGGCAGAGAAAGGCGTGACAGAATTGAGCTCAGCTAGTAGATTCCCTGTATGGGCATCTTTGGTCTTGTACCGCAAAATACTAGATGAGATTGAAGCCAATGACTACAACAACTTCACAAAGAGAGCATATGTGAGCAAATCAAAGAAGTTGATTGCATTACCTATTGCATATGCAAAATCTCTTGTGCCTCCTACAAAAACTGCCTCTCTTCAAAGATAAAGCATGAAATGAAGATATATATATATATATATATAGCAATATACATTAGAAGAAAAAAAGGAAGAAGAAATGTTGTTGTATTGATATAAATGTATATCATAAATATTAGGTTGTAGTAACATTCAATATAATTATCTCTTGTAGTTGTTGTATCTTCACTTTATCTCAACTCCTTTGAGAGAACTTTCCGTAGTTATCTGCTTTGCACTTGGTTACTCAGAATTTTACTGTGGGCATGATAATTGATATACCAAATTCAGTTTTGATTCTATCGAAAAATTTGTTATTACATTTTTTTGGGGGGAAAGGAA
![]() ![]() | translated polypeptide sequence |
>Solyc03g031860.2.1 Phytoene synthase 1
MSVALLWVVSPCDVSNGTSFMESVREGNRFFDSSRHRNLVSNERINRGGGKQTNNGRKFSVRSAILATPSGERTMTSEQMVYDVVLRQAALVKRQLRSTNELEVKPDIPIPGNLGLLSEAYDRCGEVCAEYAKTFNLGTMLMTPERRRAIWAIYVWCRRTDELVDGPNASYITPAALDRWENRLEDVFNGRPFDMLDGALSDTVSNFPVDIQPFRDMIEGMRMDLRKSRYKNFDELYLYCYYVAGTVGLMSVPIMGIAPESKATTESVYNAALALGIANQLTNILRDVGEDARRGRVYLPQDELAQAGLSDEDIFAGRVTDKWRIFMKKQIHRARKFFDEAEKGVTELSSASRFPVWASLVLYRKILDEIEANDYNNFTKRAYVSKSKKLIALPIAYAKSLVPPTKTASLQR*
MSVALLWVVSPCDVSNGTSFMESVREGNRFFDSSRHRNLVSNERINRGGGKQTNNGRKFSVRSAILATPSGERTMTSEQMVYDVVLRQAALVKRQLRSTNELEVKPDIPIPGNLGLLSEAYDRCGEVCAEYAKTFNLGTMLMTPERRRAIWAIYVWCRRTDELVDGPNASYITPAALDRWENRLEDVFNGRPFDMLDGALSDTVSNFPVDIQPFRDMIEGMRMDLRKSRYKNFDELYLYCYYVAGTVGLMSVPIMGIAPESKATTESVYNAALALGIANQLTNILRDVGEDARRGRVYLPQDELAQAGLSDEDIFAGRVTDKWRIFMKKQIHRARKFFDEAEKGVTELSSASRFPVWASLVLYRKILDEIEANDYNNFTKRAYVSKSKKLIALPIAYAKSLVPPTKTASLQR*
![]() ![]() |
![]() ![]() | [Associate new unigene] |
Unigene ID:
[loading...]
![]() ![]() | [Associate new genbank sequence] |
EF157835 phytoene synthase [Solanum lycopersicum]
phytoene synthase [Solanum lycopersicum var. cerasiforme]
AK247060 Solanum lycopersicum cDNA, clone: LEFL1026BG09, HTC in leaf.
EF650010 phytoene synthase [Solanum lycopersicum]
EF534739 phytoene synthase 1 [Solanum lycopersicum]
EF534740 phytoene synthase 1 [Solanum lycopersicum]
M84744 Tomato phytoene synthetase mRNA, complete cds.
X67144 L.esculentum (rY mutant) GTOM5 mRNA for mutant phytoene synthase.
X67143 L.esculentum (yellow flesh mutant) GTOM5 mRNA for mutant phytoene synthase.
NM_001247883 Solanum lycopersicum phytoene synthetase (Psy1), mRNA
BT012712 Lycopersicon esculentum clone 113593R, mRNA sequence.
A21360
DQ335097 Lycopersicon esculentum phytoene synthase mRNA, complete cds.
phytoene synthase [Solanum lycopersicum var. cerasiforme]
AK247060 Solanum lycopersicum cDNA, clone: LEFL1026BG09, HTC in leaf.
EF650010 phytoene synthase [Solanum lycopersicum]
EF534739 phytoene synthase 1 [Solanum lycopersicum]
EF534740 phytoene synthase 1 [Solanum lycopersicum]
M84744 Tomato phytoene synthetase mRNA, complete cds.
X67144 L.esculentum (rY mutant) GTOM5 mRNA for mutant phytoene synthase.
X67143 L.esculentum (yellow flesh mutant) GTOM5 mRNA for mutant phytoene synthase.
NM_001247883 Solanum lycopersicum phytoene synthetase (Psy1), mRNA
BT012712 Lycopersicon esculentum clone 113593R, mRNA sequence.
A21360
DQ335097 Lycopersicon esculentum phytoene synthase mRNA, complete cds.
Other genome matches | None |
![]() ![]() | [Associate publication] [Matching publications] |
A tomato gene expressed during fruit ripening encodes an enzyme of the carotenoid biosynthesis pathway.
The Journal of biological chemistry (1992)
Show / hide abstract
Show / hide abstract
In the initial stages of carotenoid biosynthesis in plants the enzyme phytoene synthase converts two molecules of geranylgeranyl diphosphate into phytoene, the first carotenoid of the pathway. We show here that a tomato (Lycopersicon esculentum) cDNA for a gene (Psy1) expressed during fruit ripening directs the in vitro synthesis of a 47-kDa protein which, upon import into isolated chloroplasts, is processed to a mature 42-kDa form. The imported protein is largely associated with membranes, but it can be easily solubilized by dilution or by treatment at high pH. A plasmid construct containing prokaryotic promoter and ribosome-binding sequences fused to the Psy1 cDNA complements the carotenoidless phenotype of a Rhodobacter capsulatus crtB mutant. We conclude that Psy1 encodes phytoene synthase and that this enzyme is a peripheral plastid membrane protein.
Bartley, GE. Viitanen, PV. Bacot, KO. Scolnik, PA.
The Journal of biological chemistry.
1992.
267(8).
5036-9.
Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression.
Plant molecular biology (1993)
Show / hide abstract
Show / hide abstract
A tomato phytoene synthase gene, Psy1, has recently been isolated as the clone GTOM5 and shown by sequence identity to be the gene from which the major fruit-ripening cDNA clone TOM5 was derived. Sequence analysis of transcripts from two allelic yellow-fruited tomato mutants, mapped to chromosome 3, has shown the lack of carotenoids in fruit of these mutants to be due to the production of aberrant TOM5 transcripts which are unlikely to encode a functional phytoene synthase enzyme. In one mutant (yellow flesh) the aberrant transcript contained a sequence that, by its strong hybridization to a wide size range of genomic fragments, appeared to be repeated many times within the genome. Southern and PCR analysis of the phytoene synthase genes in the mutant revealed restriction fragment length polymorphisms, suggesting that the production of altered mRNAs was associated with specific genomic rearrangements. Constitutive over-expression of a TOM5 cDNA clone in transgenic mutant plants restored synthesis of the carotenoid lycopene in ripening fruit and also led to unscheduled pigment production in other cell types. In some mutant plants transformed with the TOM5 cDNA construct, inhibition of carotenoid production in immature green fruit, leaves and flowers was observed, due to the phenomenon of co-suppression, indicating that different insertion events with the same gene construct can lead to overexpression or co-suppression in transgenic plants. Green organs of these plants were susceptible to photobleaching, due to the lack of carotenoids. These results suggest the existence of separate Psy genes for carotenoid synthesis in green organs.
Fray, RG. Grierson, D.
Plant molecular biology.
1993.
22(4).
589-602.
Cloning and characterization of tomato leaf senescence-related cDNAs.
Plant molecular biology (1997)
Show / hide abstract
Show / hide abstract
Senescence-related cDNA clones designated SENU1, 4, 5 (senescence up-regulated) and SEND32, 33, 34, 35 and 36 (senescence down-regulated) isolated from a tomato leaf cDNA library [9] were characterized. Southern analysis showed that SEND32 is encoded by a single-copy gene while SEND33, 34, 35, 36 and SENU1 and SENU5 are members of small gene families. DNA and protein database searches revealed that SEND32, SEND35, SENU1 and SENU5 are novel cDNAs of unknown function. SEND33 encodes ferredoxin, SEND34 encodes a photosystem II 10 kDa polypeptide and SEND36 encodes catalase. The SENU4 sequence is identical to the P6 tomato protein previously reported to be pathogenesis-related [46]. The mRNA levels of SENU1, 4 and 5 increased during leaf senescence and SENU1 and SENU5 were also expressed at high levels during leaf development and in other plant organs. The SENU4 mRNA was associated more specifically with leaf senescence, although low expression was also detected in green fruit. The mRNAs for all SEND clones decreased during tomato leaf development and senescence and all except SEND32 were expressed at low levels in other plant organs. The accumulation of mRNA homologous to SENU4 and the decrease in abundance of SEND32 provide good molecular markers for leaf senescence.
John, I. Hackett, R. Cooper, W. Drake, R. Farrell, A. Grierson, D.
Plant molecular biology.
1997.
33(4).
641-51.
Phytoene synthase genes in tomato (Solanumlycopersicum L.) - new data on the structures, the deduced amino acid sequences and the expression patterns.
The FEBS journal (2008)
Show / hide abstract
Show / hide abstract
The fruit of tomato (Solanum lycopersicum L.) is a berry: red, fleshy and rich in seeds. Its colour is due to the high content of lycopene whose synthesis is activated by the phytoene synthase 1 (PSY1) enzyme, encoded by Psy1 which is distinct from Psy2. In the present study, we report on the genomic structures of the Psy1 and Psy2 genes and on their transcription patterns in different tomato tissues. Our results have completely clarified the structure of the Psy1 and Psy2 genes in the coding sequence region. The two genes were shown to have an highly conserved structure, with seven exons being almost identical and six introns being much more variable. For Psy1 and Psy2, respectively, the sequenced regions were 4527 and 3542 bp long, the coding sequences were 1239 bp and 1317 bp long, whereas the predicted protein sequences were 412 and 438 amino acids. The two proteins are almost identical in the central region, whereas most differences are present in the N-terminus and C-terminus. Quantitative real time PCR analysis showed that Psy2 transcript was present in all tested plant tissues, whereas Psy1 transcript could be detected in chromoplast-containing tissues, particularly in fruit where it activates and boosts lycopene accumulation. Interestingly, the organ with the highest relative content of Psy2 transcript is the petal and not the leaf. Psy1 is a Psy2 paralog derived through a gene duplication event that have involved other genes encoding rate controlling enzymes of the carotenoid pathway. Duplicate genes have been recruited to allow carotenoid synthesis in petals and fruits. However, recruitment of carotenoid metabolism for fruit pigmentation could have occurred later in the evolution, either because phytoene synthase gene duplication occurred later or because the fruit pigmentation process required a more sophisticated mechanism involving tight control of the transcription of other genes.
Giorio, G. Stigliani, AL. D'Ambrosio, C.
The FEBS journal.
2008.
275(3).
527-35.
Epistasis in tomato color mutations involves regulation of phytoene synthase 1 expression by cis-carotenoids.
Proceedings of the National Academy of Sciences of the United States of America (2012)
Show / hide abstract
Show / hide abstract
Tomato (Solanum lycopersicum) fruit accumulate the red carotenoid pigment lycopene. The recessive mutation yellow-flesh (locus r) in tomato eliminates fruit carotenoids by disrupting the activity of the fruit-specific phytoene synthase (PSY1), the first committed step in the carotenoid biosynthesis pathway. Fruits of the recessive mutation tangerine (t) appear orange due to accumulation of 7,9,7',9'-tetra-cis-lycopene (prolycopene) as a result of a mutation in the carotenoid cis-trans isomerase. It was established 60 y ago that tangerine is epistatic to yellow-flesh. This uncharacteristic epistasis interaction defies a paradigm in biochemical genetics arguing that mutations that disrupt enzymes acting early in a biosynthetic pathway are epistatic to other mutations that block downstream steps in the same pathway. To explain this conundrum, we have investigated the interaction between tangerine and yellow-flesh at the molecular level. Results presented here indicate that allele r(2997) of yellow-flesh eliminates transcription of PSY1 in fruits. In a genetic background of tangerine, transcription of PSY1 is partially restored to a level sufficient for producing phytoene and downstream carotenoids. Our results revealed the molecular mechanism underlying the epistasis of t over r and suggest the involvement of cis-carotenoid metabolites in a feedback regulation of PSY1 gene expression.
Kachanovsky, DE. Filler, S. Isaacson, T. Hirschberg, J.
Proceedings of the National Academy of Sciences of the United States of America.
2012.
109(46).
19021-6.
![]() ![]() | [Add ontology annotations] |
[loading...]
![]() ![]() |
- Genomic details
User comments |
Please wait, checking for comments. (If comments do not show up, access them here)
Your Lists
Public Lists
List Contents
List Validation Report: Failed
Elements not found:
Optional: Add Missing Accessions to A List
Mismatched case
Click the Adjust Case button to align the case in the list with what is in the database.
Multiple mismatched case
Items listed here have mulitple case mismatches and must be fixed manually. If accessions need to be merged, contact the database directly.
List elements matching a synonym
Multiple synonym matches
Fuzzy Search Results
Synonym Search Results
Available Seedlots
Your Datasets
Public Datasets
Dataset Contents
Dataset Validation Failed
Elements not found:
Your Calendar
Having trouble viewing events on the calendar?
Are you associated with the breeding program you are interested in viewing?
Add New Event
Event Info
Attribute | Value |
---|---|
Project Name: | |
Start Date: | |
End Date: | |
Event Type: | |
Event Description: | |
Event Web URL: |
Edit Event
Login
Forgot Username
If you've forgotten your username, enter your email address below. An email will be sent with any account username(s) associated with your email address.
Reset Password
To reset your password, please enter your email address. A link will be sent to that address with a link that will enable you to reset your password.
Create New User
Working
